词条 曲线积分

曲线积分

在数学中,曲线积分路径积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分围道积分

在曲线积分中,被积的函数可以是标量函数或向量函数。当被积函数是标量函数时,积分的值是积分路径各点上的函数值乘上该点切向量的长度,在被积分函数是向量函数时,积分值是积分向量函数与曲线切向量的内积。在函数是标量函数的情形下,可以把切向量的绝对值(长度)看成此曲线把该点附近定义域的极小区间,在对应域内拉长了切向量绝对值的长度,这也是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简洁公式(例如W=F·s)在推广之后都是以曲线积分的形式出现(W=\int_C \mathbf F\cdot d\mathbf s)。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功。

曲线积分相关文献
积分
简介函数f{displaystylef}在区间[0,1]上积分的近似■极大值(5部分)和■极小值(12部分)积分发展的动力源自实际应用中的需求。实际操作中,有时候
查看全文
曲线
历史定义平面曲线在数学上,一条曲线的定义为:我们常遇到的平面曲线的拓扑空间为R2{displaystylemathbb{R}^{2}}。空间曲线常见曲线请参见曲线列表曲线方程请参阅参数方程。一般来
查看全文
双曲线
定义共轭单位直角双曲线前两个上面已经列出了:平面切直角圆锥面的两半的交截线。与两个固定点(称为焦点)距离差为常数的点的轨迹。到一个焦点的距离和到一条直线(称为准线)的距离的比例是大于1{displaystyle1}的常数的点的轨迹。这个常数称为双曲线的偏心率。双曲线由分开两个焦点的两个分离的称为臂
查看全文
正弦曲线
一般形式正弦曲线的形状就像完美的海上波浪般,以三角函数正弦比例改变而形成。标准的纯正弦函数公式为sin(x)为正弦函数。而一般应用的正弦曲线公式为A为波幅(纵轴),ω为角频率,t为时间(横轴),θ为相偏移(横轴左右)。以下的公式则拥有全部的可用参数k为波数(周期密度),D为(直流)偏移量(y轴高低)。产生展示余弦(或正弦)波与圆的基本关系。正弦曲线的出现和应用非常广泛,可经常见于研究和使用于:信号处理的模拟信号物理的简谐运动声学的声音空气振动乐器音叉的振动波频率产生器的输出交流电的电压改变等等。即使是其它不规则的非正弦波,其实亦能够以不同周期和波幅的正弦波集合来表示。这类将复杂波段化成正弦波的技术称为傅立叶分析。参看正弦信号三角函数有阻尼的弦波
查看全文
曲线积分
向量分析大致来说,向量分析中的曲线积分可以看成在某一场中沿特定路径的累积效果。更具体地说,如果曲线C⊆⊆-->R2{displaystyleCsubseteqmathbb{R}^{2}},
查看全文
曲线积分相关标签
复分析
向量分析
积分学
学科&术语