族谱网 头条 人物百科

超光速运动

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:552
转发:0
评论:0
解释对此现象的解释相当简单直接,即“光行时间效应”。想像一小团块物质从银河系中心出发,并且朝向你极快速地移动,“几乎”是迎面而来。当这团块还在银河中心时,它发出一些朝向你的光。在它移向你后(并且一点点偏向侧边),并且又再次向你发光,这次的光会花上比较短的时间向你行进,以其离你较近。如果你忽略了这项事实,那么你就会“低”估了真正的时间间隔(就你的惯性参考系而言),因此你会“高”估速率。换句话说,若你要计算团块移动多快,却假设它移动方向垂直于你与银河间的连接线,那么你就会低估时间间隔,因为你忽略了事实上它也朝你移动,而得到数倍于光速的速率。这现象常见于两个反向的喷流,一道远离我们,一道接近我们。若这两道辐射源,我们都观测多普勒位移,则速度与距离可以被决定,不受其他观察项目的影响。一些相反的证据早在1983年在卓瑞尔河岸天文台举办的超光速研讨会中,就提及了七个超光速喷流:换句话说,喷流显然并不是...

解释

对此现象的解释相当简单直接,即“光行时间效应”。想像一小团块物质从银河系中心出发,并且朝向你极快速地移动,“几乎”是迎面而来。

当这团块还在银河中心时,它发出一些朝向你的光。在它移向你后(并且一点点偏向侧边),并且又再次向你发光,这次的光会花上比较短的时间向你行进,以其离你较近。如果你忽略了这项事实,那么你就会“低”估了真正的时间间隔(就你的惯性参考系而言),因此你会“高”估速率。

换句话说,若你要计算团块移动多快,却假设它移动方向垂直于你与银河间的连接线,那么你就会低估时间间隔,因为你忽略了事实上它也朝你移动,而得到数倍于光速的速率。

这现象常见于两个反向的喷流,一道远离我们,一道接近我们。若这两道辐射源,我们都观测多普勒位移,则速度与距离可以被决定,不受其他观察项目的影响。

一些相反的证据

早在1983年在卓瑞尔河岸天文台举办的超光速研讨会中,就提及了七个超光速喷流:

换句话说,喷流显然并不是平均地接近观测者的视线。(如果是平均接近的话,外显长度应是远短于所观测到的实际长度)。

1993年 Thomson 等人提出,类星体3C273的外部喷流是几乎和观测者的视线是共线的。沿着3C273内部喷流观测到的超光速运动最高达到约9.6倍光速。

在M87星系的喷流较内侧部分已观测到6倍光速的运动。如果要以运动方向和观测者视线夹角很小的模型来解释的话,喷流和视线方向夹角不能高于19°。不过观测证据显示实际的夹角达到43°。同组的科学家后来修改其结果,并宣称他们的观测结果支持喷流中的整体超光速运动。

目前已经有人提出喷流较内部分的湍流或“大锥角”结构尝试解决相关疑问,并且似乎有相关证据。

数学推导

从活动星系核中心发出的相对论性喷流假设沿着路径 AB 以速度 v 运动A。观测者在位置 O 观测该喷流。在时间 t1{\displaystyle t_{1}} 时一束光从 A 点离开喷流,并且在时间 t2{\displaystyle t_{2}} 有另一束光从 B 点离开喷流。观测者在位置 O 观测到两束光的时间分别是 t1′ ′ -->{\displaystyle t_{1}^{\prime }} 和 t2′ ′ -->{\displaystyle t_{2}^{\prime }}

超光速运动

沿着路径 CB 的观测横向速度为 vT=ϕ ϕ -->DLδ δ -->t′ ′ -->=vsin⁡ ⁡ -->θ θ -->1− − -->β β -->cos⁡ ⁡ -->θ θ -->{\displaystyle v_{T}={\frac {\phi D_{L}}{\delta t^{\prime }}}={\frac {v\sin \theta }{1-\beta \cos \theta }}}

历史发展

在1966年,马丁·里斯预测了:“一物体以相对论性速度以及适切方向移动时,对远方观察者而言看起来可能像是有远大于光速的横向速度。”

几年后(于1970年),这样的辐射源真的被发现了,形式为非常远处的天文学无线电频辐射源,例如无线电银河系与类星体。它们被称为“超光速辐射源”。这项发现是一项新技术的惊人结果,此技术称为甚长基线干涉测量(VLBI),允许小于毫角秒的位置决定,并可用在天空中位置变化的决定;这种变化称为自行(又称固有运动,proper motion),为期通常是好几年。外显速度的得到是透过将观察到的自行与距离相乘,可以上达6倍光速。

在一场超光速无线电波源研讨会中,Pearson 和 Zensus 的报告称:

在1994年,在取得一项银河速率纪录的同时,发现了银河系的超光速辐射源——宇宙x射线源GRS1915+105。团块的膨胀时间相对短得许多。许多个别的团块被侦测到其成对膨胀,一周内常可达0.5角秒。因为与类星体相类比,这样的辐射源被称为微类星体。

参见

超高能宇宙射线

超光速

超光速通讯


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 超光速
物理学与天文学上相关条目相对论真空中光速:标记为c{\displaystylec\,},定义值为:299,792,458.17m/s(1,079,252,848.8公里/小时)。迅子:迅子(tachyon)从相对论衍生出的理论虚拟粒子,总是以高于c的速度在宇宙运行。与一般物质(称为迟子(tardyon))的交互作用可能性不明;是故,即使迅子存在也不一定能侦测得到。波动速度定义信号速度永远不超过真空中的光速。相速度与超光速:一个波动的相速度可以轻易地超过真空光速c。原则上,甚至是简单的机械波都可以超过,而且不需要有任何物体是以接近或超过c的速度在移动。然而这和信号或信息的传递速度能否超过c无关。群速度与超光速:在一些特殊情况下,一个波动(例如光束)的群速度甚至也可以超过c。在这些例子中,会相伴出现的是强度的快速衰减。此脉冲的极大点可以用超过c的速度移动。然而相同地,这也不表示讯号或资讯的传递...
· 光速
数值、记法及单位真空中的光速通常以小写c表示,即英文中“constant”(恒等、常数)或拉丁文“celeritas”(迅捷)的首字母。最初,人们曾以詹姆斯·克拉克·麦克斯韦于1865年使用的符号V表示光速。1856年,威廉·爱德华·韦伯和鲁道夫·科尔劳施曾使用c代表另一个常数。该常数后来被证明为光速的√2倍。1894年,保罗·德鲁德重新将c定义为光速。阿尔伯特·爱因斯坦在1905年发表有关狭义相对论的最早德文论文中使用了V,但在1907年便转用当时已通用的符号c。在某些情况下,c表示任何媒介中波传播的速度,而c0则表示光在真空中的速度。这种使用下标的记法受SI官方出版物认可,且与其它相关常数的记法相符,包括真空磁导率μ0、真空电容率ε0(又称电常数)以及自由空间阻抗Z0。本条目以c代表真空中的光速。自1983年起,国际单位制(SI)将米定义为⁄299,792,458秒内光在真空中所运行的...
· 光速的测定
光速的测定在光学的发展史上具有非常特殊而重要的意义。它不仅推动了光学实验,也打破了光速无限的传统观念;在物理学理论研究的发展里程中,它不仅为粒子说和波动说的争论提供了判定的依据,而且最终推动了爱因斯坦相对论理论的发展。在光速的问题上物理学界曾经产生过争执,开普勒和笛卡尔都认为光的传播不需要时间,是在瞬时进行的。但伽利略认为光速虽然传播得很快,但却是可以测定的。1607年,伽利略进行了最早的测量光速的实验。伽利略的方法是,让两个人分别站在相距一英里的两座山上,每个人拿一个灯,第一个人先举起灯,当第二个人看到第一个人的灯时立即举起自己的灯,从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播两英里的时间。但由于光速传播的速度实在是太快了,这种方法根本行不通。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。罗麦的理论没有马上被法国科学院接受,但得到了著名科学家惠更斯的赞同。惠更斯根据他提...
· 光速不变原理
参阅光速麦克斯韦方程组相对论光速可变理论超光速参考文献
· 光速是怎么算出来的
1607年伽利略最早做了测定光速的尝试:让两个实验者在夜间每人各带一盏遮蔽着的灯,站在相距约1.6km的两个山顶上,第一个实验者先打开灯,同时记下开灯的时间,第二个实验者看到传来的灯光后,立刻打开自己的灯,第一个实验者看到第二个实验者的灯光后,再立刻记下时间.然后根据记下的时间间隔和两山顶间的距离计算出光的传播速度.这种测量光速的方法,原理虽然正确,但是却没能测出光速,这是因为光速很大,在相距约1.6km的两山顶间来回一次,所用的时间大约只有十万分之一秒,这样短的时间,比实验者的反应时间短得多,即使有比较精密的计时仪器也测不出光速来,更不用说当时的原始计时装置了.要测定光速,必须利用很大的距离,或者用精巧的方法准确地测量出很短的时间间隔.伽利略以后的学者们正是沿着这两个方向探求测定光速的方法的.1676年丹麦天文学家罗默(1644~1710)用天文观测的方法,发现光是以有限速度传播的.利用...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信