超光速运动
解释
对此现象的解释相当简单直接,即“光行时间效应”。想像一小团块物质从银河系中心出发,并且朝向你极快速地移动,“几乎”是迎面而来。
当这团块还在银河中心时,它发出一些朝向你的光。在它移向你后(并且一点点偏向侧边),并且又再次向你发光,这次的光会花上比较短的时间向你行进,以其离你较近。如果你忽略了这项事实,那么你就会“低”估了真正的时间间隔(就你的惯性参考系而言),因此你会“高”估速率。
换句话说,若你要计算团块移动多快,却假设它移动方向垂直于你与银河间的连接线,那么你就会低估时间间隔,因为你忽略了事实上它也朝你移动,而得到数倍于光速的速率。
这现象常见于两个反向的喷流,一道远离我们,一道接近我们。若这两道辐射源,我们都观测多普勒位移,则速度与距离可以被决定,不受其他观察项目的影响。
一些相反的证据
早在1983年在卓瑞尔河岸天文台举办的超光速研讨会中,就提及了七个超光速喷流:
换句话说,喷流显然并不是平均地接近观测者的视线。(如果是平均接近的话,外显长度应是远短于所观测到的实际长度)。
1993年 Thomson 等人提出,类星体3C273的外部喷流是几乎和观测者的视线是共线的。沿着3C273内部喷流观测到的超光速运动最高达到约9.6倍光速。
在M87星系的喷流较内侧部分已观测到6倍光速的运动。如果要以运动方向和观测者视线夹角很小的模型来解释的话,喷流和视线方向夹角不能高于19°。不过观测证据显示实际的夹角达到43°。同组的科学家后来修改其结果,并宣称他们的观测结果支持喷流中的整体超光速运动。
目前已经有人提出喷流较内部分的湍流或“大锥角”结构尝试解决相关疑问,并且似乎有相关证据。
数学推导
从活动星系核中心发出的相对论性喷流假设沿着路径 AB 以速度 v 运动A。观测者在位置 O 观测该喷流。在时间 t1{\displaystyle t_{1}} 时一束光从 A 点离开喷流,并且在时间 t2{\displaystyle t_{2}} 有另一束光从 B 点离开喷流。观测者在位置 O 观测到两束光的时间分别是 t1′ ′ -->{\displaystyle t_{1}^{\prime }} 和 t2′ ′ -->{\displaystyle t_{2}^{\prime }}

沿着路径 CB 的观测横向速度为 vT=ϕ ϕ -->DLδ δ -->t′ ′ -->=vsin -->θ θ -->1− − -->β β -->cos -->θ θ -->{\displaystyle v_{T}={\frac {\phi D_{L}}{\delta t^{\prime }}}={\frac {v\sin \theta }{1-\beta \cos \theta }}}
历史发展
在1966年,马丁·里斯预测了:“一物体以相对论性速度以及适切方向移动时,对远方观察者而言看起来可能像是有远大于光速的横向速度。”
几年后(于1970年),这样的辐射源真的被发现了,形式为非常远处的天文学无线电频辐射源,例如无线电银河系与类星体。它们被称为“超光速辐射源”。这项发现是一项新技术的惊人结果,此技术称为甚长基线干涉测量(VLBI),允许小于毫角秒的位置决定,并可用在天空中位置变化的决定;这种变化称为自行(又称固有运动,proper motion),为期通常是好几年。外显速度的得到是透过将观察到的自行与距离相乘,可以上达6倍光速。
在一场超光速无线电波源研讨会中,Pearson 和 Zensus 的报告称:
在1994年,在取得一项银河速率纪录的同时,发现了银河系的超光速辐射源——宇宙x射线源GRS1915+105。团块的膨胀时间相对短得许多。许多个别的团块被侦测到其成对膨胀,一周内常可达0.5角秒。因为与类星体相类比,这样的辐射源被称为微类星体。
参见
超高能宇宙射线
超光速
超光速通讯
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

- 有价值
- 一般般
- 没价值








24小时热门
推荐阅读



关于我们

APP下载


{{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}