族谱网 头条 人物百科

机器翻译

2017-10-16
出处:族谱网
作者:阿族小谱
浏览:494
转发:0
评论:0
历史机器翻译的概念最早可追溯到17世纪。1629年,哲学家笛卡儿(RenéDescartes)提出了世界语言的概念,即将不同语言相同含义的词汇以统一符号表示。笛卡儿、莱布尼兹(Gottf

历史

机器翻译的概念最早可追溯到17世纪。1629年,哲学家笛卡儿(René Descartes)提出了世界语言的概念,即将不同语言相同含义的词汇以统一符号表示。笛卡儿、莱布尼兹(Gottfried Wilhelm Leibniz)、贝克(Cave Beck)、基尔施(Athanasius Kircher)以及贝希尔(Johann Joachim Becher)等人曾试图编写类似世界语言的辞典。直到近代,借由机械的辅助,机器翻译的可行性大为提升。20世纪初期便有多位科学家与发明家陆续提出机器翻译的理论与实作计划或想法。沃伦·韦弗被誉为机器翻译的鼻祖。他抛却了俄语文本的含义,转而视为一堆“密码”。在美国和欧洲,他的团队和继任者在工作时都遵循着一个常理:“任何语言都是由一堆词汇和一套语法规则组成。只要把两种词汇放到机器里,按照人类组合这两种词汇的方式,为之建立一套完整的规则,机器就能破译“密码”。”1954年美国乔治城大学在一项实验中,成功将约60句的俄文自动翻译成英文,被视为机器翻译可行的开端。自此开始的十年间,政府与企业相继投入相当的资金,用于机器翻译的研究上。然而,ALAPC(自动语言处理顾问委员会,Automatic Language Processing Advisory Committee)在1966年提出的一项报告中表明十年来的机器翻译研究进度缓慢,未达预期。该项报告使得之后的研究资金大为减缩,直到近1980年代,由于电脑运算科技的进步,以及演算成本相对降低,才使政府与企业对机器翻译再次提起兴趣,特别是在统计法机器翻译的领域上。

翻译流程

从人为的翻译来看机器翻译,翻译的过程可被细分如下:

解译来源文字的文意

重新编译此解析后所得的文意至目标语言。

在这看似简单的步骤之后其实是复杂的认知操作。要能解译来源文字的完整意义,一个译者必须能够分析与诠释整段文章的所有特征,必须能够深度的了解其文法、语义、语法、成语等等,相当于了解来源语言的文化背景。译者同时也必须兼备目标语言相同深度的知识。

于是,这对机器翻译便是一项挑战,即:要如何设计一个程式使其能够如同真人一样的“了解(认知)”一段文字,并且能够“创造”一段好似真人实际写作出来的目标语言的文字。

这问题有一些不同的方式可以加以解决。.....

方法

机器翻译

 

机器翻译可以使用一种基于语言规则的语法,文字将会依语言学的方式来进行翻译,即一个最合适的目标语言的字词将会被用来取代来源语言的字词。

能够优先解决对自然语言的正确认知与辨识,被视为机器翻译是否能够成功的最主要关键。

一般而言,用规则法(rule-based method)分析一段文字,通常会先建立目标语言中介的、象征性的表义字词。再根据这中介的表义字词来决定使用人工国际语言(interlingual)化的机器翻译,或是使用转化原则法的机器翻译(transfer-based machine translation)。这些方法都必须拥有具备足够形态学的、语句学的、以及语义学的资讯以及大量的字词规则所建构的辞汇。

常见机器翻译的难处在于无法给于适当且足够庞大的资讯,来满足不同领域或是不同法则的机器翻译法。举例来说,对于一个需要统计学法则的翻译法,给予它大量的多语言素材是必要的,但对于文法式法则的翻译法便显得没有太大意义。

规则法

规则法机器翻译的范例包含了转化法(transfer-based)、中间语法(interlingual)、以及辞典法(dictionary-based)机器翻译 。

转化法

辞典法

机器翻译可利用辞典的词汇作翻译。因为这种翻译是“字对字”的,所以通常各字之间在意思上都没有任何关联。这种机器翻译法最适用于具有冗长的词语列表(意即非完整的句子)。例如产品型录的翻译。

知识翻译

范例法

所谓范例法,即基于实例的翻译方法。基本思路是电脑模拟大量翻译实例(翻译语料库),进行有效替换的翻译策略。因此该方法依赖于翻译语料库的质量、规模和覆盖面。如果有完全一样的例句,则直接采用范例的译文;如果有多个相似的例句,则自动模拟相似度最高的译文,只需翻译不同部分即可;如果没有相似的译文,则必须进行基于统计或规则的方法进行翻译。根据乔姆斯基的转换生成语法而言,这种方法永远也无法赶上人的语言的变化。因此,这种方法算是比较笨的方法,类似于字典,我们可以从中查到有用的字词,甚至短语,但写出什么东西,却是字典无法实现的。因此这种方法有一定的实用性,但局限性也显而易见。

统计法

统计机器翻译:是目前非限定领域机器翻译中,性能较佳的一种方法。统计机器翻译的基本思想是通过对大量的平行语料进行统计分析,构建统计翻译模型,进而使用此模型进行翻译。从早期基于词的机器翻译已经过渡到基于短语的翻译,并正在融合句法信息,以进一步提高翻译的精确性。

统计机器翻译的首要任务是为语言的产生构造某种合理的统计模型,并在此统计模型基础上,定义要估计的模型参数,并设计参数估计算法。早期的基于词的统计机器翻译采用的是噪声信道模型,采用最大似然准则进行无监督训练,而近年来常用的基于短语的统计机器翻译则采用区分性训练方法,一般来说需要参考语料进行有监督训练。贝氏模型(Bayesian Model)也是一种机器翻译方法。

参见

电脑辅助翻译

在线翻译网站

AltaVista Babelfish

excite中日韩文翻译

worldlingo线上翻译器

ICOOC线上多语种翻译

Yahoo提供的段落翻译

SYSTRAN Language Translation Technology

SPENG

WorldLingo

Google翻译

有道翻译

Ceviri统计机器译者

Jollo在线机器翻译比较

MTIR英中翻译系统

Babylon多语言线上翻译

Freetranslations 免费翻译

百度翻译


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信